University of Colorado Boulder
ECEE Department

ECEN 2270 - Electronics Design Lab - Spring 2024

Location: Engineering Center, ECEE 281, T,TH, 3:30 - 5:20 PM
Instructor: Steven Dunbar

Lab Title: Lab 4: Speed and Position Control

Date of Experiment: April 21, 2024

Name: Connor Sorrell

Introduction and Objectives

Introduction:

In this lab, we focused on advancing the practical application of our control system by
finishing off the implementation of various integrating circuits and components on the
breadboard. This involved finishing the speed feedback control loop on the other side of the
breadboard, adding decoupling capacitors throughout the build, and tinkering with component
values until a practical robot was complete. We then powered and tested an Ardunio,
confirming its operational capabilities to control our motor direction and speed via its digital
pins. This integration allowed the robot to execute pre-coded movements accurately, which
adhered to the specific parameters of speed and position control. The arduino was coded with
the help of an ISR, in which we counted encoder pulses which enabled us to accurately correlate
a reference number into precise movements of our robot, including specific distances and
turning angle. With an already fully implemented breadboard, the addition of the arduino
coding allowed us to have a fully functional robot which passed all control tests and
demonstrated its ability to move straight for any distance and turn either direction at any
degree. The lab was easily our favorite of the semester, as we could see all our hard work
coming to fruition. It also reinforced our skills in programming, as well as bridged the gap
between the hardware implementation and the code behind the car as well. Overall, the lab
went smooth and has inspired us to work hard on a unique final project for the car.

Objectives:
Throughout the lab, there are some key objectives that are accomplished:
e The speed feedback control loop is implemented on the other side of the breadboard; all
circuit implementations are built and function properly.
The arduino is powered and tested and confirmed to work as expected.
The motor direction control and speed control are connected to the digital pins of the
arduino and all work together seamlessly.
e The robot moves as intended with the arduino and it works together with the speed
control circuit as planned.
The interrupt overhead is understood, estimated and confirmed.
Comparators are used as level shifters to cap the PWM output at 5V in order to adhere
to the properties of the arduino.
e Number of CPU cycles available for programming in each ISR (at motors full speed) is
determined.
e Encoder pulses are counted and translated to the cars position control; a specific
number of pulses translates to a certain distance, turn radius, etc.
e The encoder count is confirmed by repeated comprehensive position control tests.

Code is written that effectively controls the arduino, can move forward, backward and
turn both ways.

The robot passes a position control test. It can move straight, do a counterclockwise 180
degree turn, move straight again, and do a clockwise 180 degree turn.

The robot is fully functional and the breadboard adheres to circuit building guidelines.

Experiment 4A: Speed and Position Control

Experiment 4.A.2: Speed Controller for Second Side of Robot
_ N

i 'li
g Sel

IR
feeEN mesEw
He w v =~ | TN~ w4
LR r cswmE vwwaw |
R semNT Nswww 1 v .‘

LR R] NN e - wull
|

SRANA~ LE R R L -0 L

GErmnn s Ny owow o Gamm e ey 1] il

The above image shows the complete schematic of the speed controller on one robot.
The left schematic was made in a near-perfect copy of the right schematic. One difference was
the wiring of the Vref and Vg, as those references were on the other side of the middle column
opamp. At this stage, we also added several decoupling capacitors across the breadboard to the
integrated circuits.

Experiment 4.A.3: Test Arduino

void setup() {
// initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT) ;

// the loop function runs over and over again forever
void loop() {
digitalWrite (LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

delay (2000) ; // wait for 2 seconds
digitalWrite (LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay (200) ; // wait for 0.2 seconds (200ms)

Experiment 4.A.4: Power Arduino

Experiment 4.A.5: Connect Vref Outputs

e

WA RN RN EE E

b Al

i : Y, R .
e i D RO S P ey

The simple low-pass filter, seen above, was created to convert our PWM signal to an
analog Vref with a magnitude of 0-5V. The computation for this filter is seen above, and the
time constant necessary to achieve the correct attenuation is 0.0082. To achieve this value, a
capacitor of one microfarad matched with a resistor of 8.2 kiloohms was chosen.

Experiment 4.A.6: Adjust the Speed Control Feedback Circuits

// define pins
const int pinRightPWM = 9;
const int pinLeftPWM = 10;

void setup() {

pinMode (pinRightPWM, OUTPUT) ;

pinMode (pinLeftPWM, OUTPUT) ;

analogWrite (pinRightPWM, 4*51); //Vref = 4V

analogWrite (pinLeftPWM, 4*0.99*51); //Vref = 4V; left runs fast so make it 99%
of Right
}

void loop() {
}

The Arduino code to generate the PWM signals for Vref is shown above. When probed,
each of our max speeds was around 5V, so the t value was not modified. To verify each motor

ran at the same speed at incremental Vref values, we ran our robots for five seconds on the
floor. Analyzing the robots’ direction path, we were able to notice if one motor ran fast. In the
case of the code above, the left motor ran barely faster, so the left Vref was lowered by 1% to
account for the difference.

Experiment 4.A.7: Connect Motor Direction Control to Arduino

"eae
8

-
-
=
-
"
-

Experiment 4.A.8: Robot Speed Control with Arduino

// define pins

const int pinON = 6;

const int pinRightForward = 8;
const int pinRightBackward = 7;
const int pinRightPWM = 9;
const int pinLeftPWM = 10;
const int pinLeftForward = 12;

const int pinLeftBackward = 11;

void setup() {
pinMode (pinON, INPUT PULLUP) ;
pinMode (pinLeftForward, OUTPUT) ;
pinMode (pinLeftBackward, OUTPUT) ;
pinMode (pinLeftPWM, OUTPUT) ;
pinMode (pinRightForward, OUTPUT) ;
pinMode (pinRightBackward, OUTPUT) ;
pinMode (pinRightPWM, OUTPUT) ;
pinMode (13, OUTPUT) ;
digitalWrite (pinLeftForward, LOW) ;
digitalWrite (pinLeftBackward, LOW) ;
digitalWrite (pinRightForward, LOW) ;
digitalWrite (pinRightBackward, LOW) ;
analogWrite (pinLeftPWM, 200); //Vref, duty cycle 200/255
analogWrite (pinRightPWM, 200); //Vref, duty cycle 200/255

void loop() {
digitalWrite (13, LOW) ;

do {} while (digitalRead (pinON) == HIGH) ;
digitalWrite (13, HIGH) ;
delay (1000) ;

digitalWrite (pinLeftForward, HIGH) ;
digitalWrite (pinRightBackward, HIGH) ;

delay (5800) ;
digitalWrite (pinLeftForward, LOW) ;
digitalWrite (pinRightBackward, LOW) ;

delay (1000) ;
digitalWrite (pinRightForward, HIGH) ;
digitalWrite (pinLeftBackward, HIGH) ;

delay (5800) ;
digitalWrite (pinRightForward, LOW) ;
digitalWrite (pinLeftBackward, LOW) ;

av | Stop Jc1|c2 16000 samples at 800 Hz | 2024-04-18 18:09:08.041.347.860 o L E Vv . @lry=
10 e L L o B B B B I LA JL 0 L B B BN O RO O B Oy
L 4 JPosiion: 0s v
Base: 2 s/div
8 4
e = -
£ E 1mominns -
“4* Add Channel -
6
Channel 1 (1£) [
Il - Offset: ov v
Range: 2 v/div v
4
Channel 2 (22) i
E < Offset: ov v
Range: 2 Vjdiv ~
2
| Fiters || Wavegens
0
-2
-4
-6
-8
-10 T T T T Y O T T T T T T T T S S AV BV AU A B
X|v-i0s -85 6s -4s -2s 0s s 4s 6s 8s 0s

 Manual Trigger | <7 Discovery3 C SN:2104158A097F 27100 MHz, | Status: OK . 'W3.21.3

This simulation shows the speed Vs (orange) and the controller output Vo (blue) during one
execution of the loop with the robot wheels off the ground.

Experiment 4.A.9: Robot Movement Repeatability Using Speed Control
// define pins

const int pinON = 6;

const int pinRightForward = 8;

const int pinRightBackward = 7;

const int pinRightPWM = 9;

const int pinLeftPWM = 10;

const int pinLeftForward = 12;

const int pinLeftBackward = 11;

void setup() {
pinMode (pinON, INPUT PULLUP) ;
pinMode (pinLeftForward, OUTPUT) ;
pinMode (pinLeftBackward, OUTPUT) ;
pinMode (pinLeftPWM, OUTPUT) ;
pinMode (pinRightForward, OUTPUT) ;
pinMode (pinRightBackward, OUTPUT) ;
pinMode (pinRightPWM, OUTPUT) ;
pinMode (13, OUTPUT) ;
digitalWrite (pinLeftForward, LOW) ;
digitalWrite (pinLeftBackward, LOW) ;
digitalWrite (pinRightForward, LOW) ;
digitalWrite (pinRightBackward, LOW) ;
analogWrite (pinLeftPWM, 200); //Vref, duty cycle 200/255
analogWrite (pinRightPWM, 200); //Vref, duty cycle 200/255

void loop() {
digitalWrite (13, LOW) ;
do {} while (digitalRead(pinON) == HIGH) ;
digitalWrite (13, HIGH);

delay (1000) ; // wait one second

digitalWrite (pinLeftForward, HIGH) ;
digitalWrite (pinRightForward, HIGH) ; //drive 2 feet
delay (2000) ;

digitalWrite (pinRightForward, LOW) ;
digitalWrite (pinRightBackward, HIGH); //do 180 clockwise
delay (1500) ;

digitalWrite (pinRightBackward, LOW) ;
digitalWrite (pinRightForward, HIGH) ; //drive 2 feet
delay (2000) ;

digitalWrite (pinLeftForward, LOW) ;
digitalWrite (pinLeftBackward, HIGH); //do 180 counter clockwise
delay (1500) ;

digitalWrite (pinRightForward, LOW) ;
digitalWrite (pinLeftBackward, LOW) ;

During most tests, the robot performed the desired actions, then came back within 1 2
inches. Although the robot ran the correct route in most tests, ~30% of the time, the robot ran
off course unexpectedly. Mainly, the turning executions were quite inconsistent, not making
perfect 180 turns. The timing method used here proved to be not as accurate as the pulse

counting method used in Experiment 4B.

Experiment 4B: Position Control

Experiment 4.B.2: Robot Movement Repeatability Using Speed Control

v | Trigd |C1|C2‘163Msamples at 100 MHz | 2024-04-11 17:23:13.025.145.790 @ 8 DEsh @ & v ||Measurements oo X
6 T T e T T R e B 4IRS B R T Y — -
“PAdd, ==, " Edit : Show., %: +

5 Name Value -
1 C1 Frequency 62.999 kHz

a0 1 | @ Frequency 60.559 kHz

3 k -

5 J

1

0 1

1

2

3

-4 R NS T . [[EEEN T N Lol [EE N S N L

X ‘V -25us -20 us -15us -10us -5us Ous 5us 10us 15us 20 us 25 us v

As seen from the picture, the ISR starts skipping pulses at around 63 kHz. This implies that the
overhead of the ISR is 1/63 kHz = ~15 microseconds.

Experiment 4.B.3: Use Comparators as Level Shifters

from Arduino R1
5V i
R3 10k o
Renc ‘ t . H;STDE D2
100k
from Motor > to Arduino Pins
Encoders "
R4 " :
Lenc - o4
100k
R2
10k

Experiment 4.B.4: Read Encoder with Arduino

Our strategy to check the correct counting of the pulses was by counting the number of encoder

pulses and comparing that to the distance traveled by the robot. We then scaled this ratio of

pulses to distance up, concluding that 2500 pulses for each side of the car drive the car two

feet.

Our test procedure involved mostly guess-and-checking until the distance was perfectly two

feet.

To write Arduino ISR’s to count the the number of encoder pulses, we used the following code

highlighted in yellow:

vold loop() {
volatile int enc_count = 0; enc_count = 0;
//const int pinON = &; delay (1000);
//const int pinRightForward = 8; target = 2500; // 2500 pulses sguates to 2 fest
//const int pinRightBackward = 7;
. . . /7 *de tuff* (in this se ive forw
//const int pinRightPWM = 9; f/rde = L is case, driv rward
. . _ . digitalWrite (pinLeftForward, HIGH);
//const int pinLeftPWM = 10; i J. i {pl) ' =5
. , N _ gitalWrite (pinRightForward, HIGH);
/fconst int pinLeftForward = 12;)
. . c -) {} while (enc_count <= target);
//const int pinleftBackward = 11; gitalWrite (pinLeftForward, LOW);
volatile int target = 0; ligitalWrite (pinRightForward, LOW);

void setup() {
// pinMode (pinCN,

// pinMode (pinLeftForward, OUTPUT) ;

INFUT PULLUP) ;

// pinMode (pinLeftBackward, OUTPUT); }
// pinMode (pinLeftPWM, OUTEUT) ;
// pinMode (pinRightForward, OUTPUT) ;

QUTEUT) ;

OUTPUT) ;

{

// pinMode (pinRightBackward,
// pinMode (pinRightPWM,
// pinMode (13, CUTPUT) ;

delay (3000);
enc count = 0;

target = 2000;

void ISR count ()

enc_count++;

distance

// digitalWrite(pinLeftForward, LOW);

// digitalWrite(pinLeftBackward, LOW);

// digitalWrite(pinRightForward, LOW);
// digitalWrite(pinRightBackward, LOW);
// analogWrite (pinLeftPWM, 100);
// analogWrite (pinRightPwWM, 240);

attachInterrupt (2,

}

ISR _count, RISING);

In the lines highlighted in yellow, the ISR can be seen. It starts by initializing a variable to zero,

which will count our number of pulses. Everytime the ISR is triggered, the count increments.

Using this logic, we can equate a specific number of pulses to an action in which the robot

performs.

Experiment 4.B.5: Position Control by Counting Encoder Pulses
Arduino program that allows the robot to move precisely by a specified number of pulses:
void twoftforward/()
{
enc_count = 0;
/*do stuff*/
target = 2550; // 2500 gets me 2 ft exact, 1250 pulses per foot
digitalWrite (pinLeftForward, HIGH) ;
digitalWrite (pinRightForward, HIGH);
do {} while(enc count <= target);
digitalWrite (pinLeftForward, LOW) ;
digitalWrite (pinRightForward, LOW) ;
return;
}
void ISR count () {
enc_count++;
}
Using these together, we can power a wheel until the desired number of pulses is reached.
180 degrees clockwise:

void oneeightyclockwise ()

{
target = 1300; //do 180 clockwise
enc_count = 0;
digitalWrite (pinRightBackward, HIGH) ;
digitalWrite (pinLeftForward, HIGH) ;
do {} while(enc count <= target);
digitalWrite (pinRightBackward, LOW) ;
digitalWrite (pinLeftForward, LOW) ;

}

180 degrees counterclockwise:

void oneeightycounter ()

{
target = 1380; //do 180 counterclockwise
enc_count = 0;
digitalWrite (pinLeftBackward, HIGH);
digitalWrite (pinRightForward, HIGH) ;
do {} while(enc count <= target);
digitalWrite (pinLeftBackward, LOW) ;
digitalWrite (pinRightForward, LOW) ;

Experiment 4.B.6: Position Control Tests

By putting all the code together from 4.B.5, we can call our functions as so:
void loop () {

digitalWrite (13, LOW);

do {} while (digitalRead (pinON) == HIGH) ;

digitalWrite (13, HIGH);

delay (1000) ;

twoftforward() ;

delay (1000);

oneeightyclockwise () ;
delay(1000);
twoftforward() ;

delay (1000) ;

oneeightycounter () ;

While performing this accuracy test, the robot came within + 2in consistently, and much more
accurately than the test performed in 4.A.9. The turning and linear movement was much more
consistent using the pulse counter method.

Experiment 4.B.7: Advanced Position Control Test (extra credit)

volatile int enc_count = 0;

const
const
const
const
const
const

const

int
int
int
int
int
int

int

pinON = 6;
pinRightForward = 8;
pinRightBackward = 7;
pinRightPWM = 9;
pinLeftPWM = 10;
pinLeftForward = 12;
pinLeftBackward = 11;

volatile int target = 0;

void setup() {
pinMode (pinON, INPUT_ PULLUP) ;

pinMode (pinLeftForward, OUTPUT) ;

pinMode (pinLeftBackward, OUTPUT) ;
pinMode (pinLeftPWM, OUTPUT) ;
pinMode (pinRightForward, OUTPUT) ;
pinMode (pinRightBackward, OUTPUT) ;
pinMode (pinRightPWM, OUTPUT) ;
pinMode (13, OUTPUT) ;

digitalWrite (pinLeftForward, LOW) ;

digitalWrite (pinLeftBackward, LOW) ;

digitalWrite (pinRightForward, LOW) ;

digitalWrite (pinRightBackward, LOW) ;

analogWrite (pinLeftPWM, 200); //Vref, duty cycle 200/255
analogWrite (pinRightPWM, 200); //Vref, duty cycle 200/255
attachInterrupt(2, ISR count, RISING) ;

Serial.begin (9600) ;

}

void loop() {
do {} while (digitalRead (pinON)

== HIGH) ;

/*RUN TWO FEET NORTH*/
target = 2500; // 2500 gets me 2 ft exact front to front
enc_count = 0;
delay (1000) ;
digitalWrite (pinLeftForward, HIGH) ;
digitalWrite (pinRightForward, HIGH) ;
do {} while(enc_count <= target);
digitalWrite (pinLeftForward, LOW) ;
digitalWrite (pinRightForward, LOW) ;
delay (1000) ;

/*Turn 90 degrees CCW*/

target = 700;

enc_count = 0;

digitalWrite (pinLeftBackward, HIGH); //do 90 deg counter clockwise
digitalWrite (pinRightForward, HIGH) ;

do {} while(enc_count <= target);

digitalWrite (pinLeftBackward, LOW) ;
digitalWrite (pinRightForward, LOW) ;
delay (1000) ;

/*RUN FOUR FEET WEST*/

target = 5250;

enc_count = 0;

digitalWrite (pinLeftForward, HIGH) ;
digitalWrite (pinRightForward, HIGH) ;
do {} while(enc_count <= target);
digitalWrite (pinLeftForward, LOW) ;
digitalWrite (pinRightForward, LOW) ;
delay (1000) ;

/*Turn 90 degrees CW*/

target = 600;

enc_count = 0;

digitalWrite (pinRightBackward, HIGH); //do 180 clockwise 750 pulses per 90 deg
digitalWrite (pinLeftForward, HIGH) ;

do {} while(enc_count <= target);

digitalWrite (pinRightBackward, LOW) ;

digitalWrite (pinLeftForward, LOW) ;

delay (1000) ;

/*RUN TWO FEET NORTH*/

target = 2500; // 2500 gets me 2 ft exact front to front
enc_count = 0;

digitalWrite (pinLeftForward, HIGH) ;

digitalWrite (pinRightForward, HIGH) ;

do {} while(enc_count <= target);

digitalWrite (pinLeftForward, LOW) ;

digitalWrite (pinRightForward, LOW) ;

delay (1000) ;

/*Turn 90 degrees CW*/

target = 700;

enc_count = 0;

digitalWrite (pinRightBackward, HIGH); //do 180 clockwise 750 pulses per 90 deg
digitalWrite (pinLeftForward, HIGH) ;

do {} while(enc_count <= target);

digitalWrite (pinRightBackward, LOW) ;

digitalWrite (pinLeftForward, LOW) ;

delay (1000) ;

/*RUN TWO FEET EAST*/

target = 2200; // 2500 gets me 2 ft exact front to front
enc_count = 0;

digitalWrite (pinLeftForward, HIGH) ;

digitalWrite (pinRightForward, HIGH) ;

do {} while(enc_count <= target);
digitalWrite (pinLeftForward, LOW) ;
digitalWrite (pinRightForward, LOW) ;
delay (1000) ;

/*Turn 90 degrees CW*/

target = 650;

enc_count = 0;

digitalWrite (pinRightBackward, HIGH); //do 180 clockwise 750 pulses per 90 deg
digitalWrite (pinLeftForward, HIGH) ;

do {} while(enc_count <= target);

digitalWrite (pinRightBackward, LOW) ;

digitalWrite (pinLeftForward, LOW) ;

delay (1000) ;

/*RUN FOUR FEET SOUTH*/

target = 5000;

enc_count = 0;

digitalWrite (pinLeftForward, HIGH) ;
digitalWrite (pinRightForward, HIGH) ;
do {} while(enc_count <= target);
digitalWrite (pinLeftForward, LOW) ;
digitalWrite (pinRightForward, LOW) ;
delay (1000) ;

/*Turn 90 degrees CCW*/

target = 725;

enc_count = 0;

digitalWrite (pinLeftBackward, HIGH); //do 90 deg counter clockwise
digitalWrite (pinRightForward, HIGH) ;

do {} while(enc_count <= target);

digitalWrite (pinLeftBackward, LOW) ;

digitalWrite (pinRightForward, LOW) ;

delay (1000) ;

/*RUN TWO FEET EAST*/

target = 2700; // 2500 gets me 2 ft exact front to front
enc_count = 0;

delay (1000) ;

digitalWrite (pinLeftForward, HIGH) ;

digitalWrite (pinRightForward, HIGH) ;

do {} while(enc_count <= target);

digitalWrite (pinLeftForward, LOW) ;

digitalWrite (pinRightForward, LOW) ;

delay (1000) ;

/*Turn 90 degrees CCW*/
target = 725;

enc_count = 0;
digitalWrite (pinLeftBackward, HIGH); //do 90 deg counter clockwise
digitalWrite (pinRightForward, HIGH) ;
do {} while(enc_count <= target);
digitalWrite (pinLeftBackward, LOW) ;
digitalWrite (pinRightForward, LOW) ;
delay (1000) ;
}
void ISR_count() {

enc_count++;

Conclusion:

In the end, our lab work ended in the successful completion of a fully functional
electronic car, demonstrating seamless integration between a precisely tuned and implemented
speed feedback control loop, and careful Arduino programming. The combination of the two
allowed our robot to perform accurate movements and turns with more than decent accuracy.
The addition of the encoder pulse counting enabled our robot to perform complex movements
extremely efficiently, and the integrated circuits allowed those precise maneuvers to happen by
providing an efficient speed and motor direction control system. The car is now fully functional
and showcases hard work and persistence, boosting our confidence and enthusiasm for future
projects. This hands-on experience not only taught us countless practical engineering skills, but
it also provided us with many learning lessons and strengthened our intangible skills. Moving
forward, the techniques mastered in these series of labs will lead to more ambitious
applications and designs not only in the final project, but in our careers as well.

Lab Exploration 4A:

1&3). Hardware interrupts are generated by external devices that are connected to the computer
system, including but not limited to keyboards, mice, timers, or network interfaces. These
interrupts are generally triggered by signals that are sent from hardware components to the CPU
to request attention or notify the CPU about a specified event. During a hardware interrupt, the
CPU effectively distributes its current execution flow and transfers control to a specified
interrupt handler routine, which is responsible for servicing the interrupt. There are different
types of hardware interrupts based on their priority, such as Non-maskable Interrupts (NMI) and
Maskable Interrupts. Software interrupts however are generated internally by the CPU in
response to specific conditions or instructions encountered during the program execution. They
are triggered through software instructions, such as system calls, illegal instructions,
divide-by-zero errors, or even page defaults. Software interrupts are implemented to request
services from the operating system to handle exceptional conditions that are encountered during
program execution. During a software interrupt, the CPU switches from the user model to a
kernel mode and transfers control to the corresponding interrupt handler routine provided by the
operating system. These interrupts are utilized for tasks such as process scheduling, memory
management, or input/put operations.

2). Polling is a technique that is commonly used in computer science and electronics to
continuously evaluate the state of a device or a system by repeatedly sending queries or requests
for information. This is done to determine if the computer system or electronics needs attention
or if certain conditions are met.

4). Whenever an interrupt occurs in a microcontroller program, the normal flow of execution is
temporarily disabled, while the microcontroller jumps to a predefined location within its memory
to execute a specific interrupt service routine also known as an ISR that is associated with the
interrupt that occurred.

5). The Arduino Nano Every, like other Arduino boards, utilizes interrupts to handle external
events effectively. The interrupt structure is based on the microcontroller embedded with it. This
microcontroller is the ATmega4809, which includes several types of interrupts. On the digital
pins of the Arduino nano, the microcontroller supports external interrupts. Furthermore, it has
several external interrupt pins usually labeled INTO, INT1, etc. These can be triggered through
changes on the pins, such as rising edges, falling edges, or logic level changes. There are also Pin
change interrupts which can be triggered by changes on any of the digital pins. Rather than just
specific pins like external interrupts, which allows for more flexible interrupt handling in
projects where the specified pin causing the interrupt is not known in advance. The Arduino
Nano also has Timer interrupts, which are built-in hardware timers that can generate interrupts at
specified intervals. These can be utilized for tasks such as timekeeping, generating PWM signals,
or triggering Periodic Events. Finally, the Arduino Nano contains Serial communication

interrupts. These can be triggered by the serial communication hardware when data is received or
transmitted over UART, SPI, or I2C interfaces.

6).
ledPin

buttonPin
buttonState = LOW;
setup () {

pinMode (ledPin, OUTPUT) ;

pinMode (buttonPin, INPUT_ PULLUP) ;

attachInterrupt (digitalPinToInterrupt (buttonPin), buttonInterrupt,
CHANGE) ;
}

buttonInterrupt() {

buttonState = digitalRead (buttonPin) ;

if (buttonState == LOW) {

digitalWrite (ledPin, !digitalRead(ledPin)) ;

We utilized the attachInterrupt() function to connect an interrupt service routine (ISR) to a
specific pin. When the external event (in this case, a change in the state of the button connected
to the interrupt pin) occurs, the microcontroller halts its current execution and immediately
jumps to execute the ISR.

